
CEWES MSRC/PET TR/98-10

PCE-QUAL-ICM: A Parallel Water Quality
Model Based on CE-QUAL-ICM

by

C. Chippada
C. Dawson
V. J. Parr

M. F. Wheeler
C. Cerco
B. Bunch
M. Noel

March 19, 1998

03h00398

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

PCE-QUAL-ICM: A Parallel Water Quality Model Based on

CE-QUAL-ICM

S. Chippada, C. Dawson, V. J. Parr, and M. F. Wheeler

Center for Subsurface Modeling (CSM)
Texas Institute for Computational & Applied Mathematics (TICAM)

University of Texas
Austin, TX 78712

and
C. Cerco, B. Bunch and M. Noel
Waterways Experiment Station

Vicksburg, MS

March 19, 1998

Abstract

CE-QUAL-ICM is a three-dimensional eutrophication model developed at the U.S. Army Corps of Engi-
neers Waterways Experiment Station (CEWES), Vicksburg, MS. This water quality model is semi-explicit
in time, and is based on an unstructured cell-centered �nite volume numerical method. The hydrodynamics
data such as velocities and turbulent di�usion are read in externally, and the model computes the advection-
di�usion-reaction of a number of physical and state variables such as temperature, salinity, sediments, oxygen,
algae, etc. This sequential FORTRAN 77 code was parallelized using data/domain decomposition strategy
and a single program, multiple data (SPMD) paradigm. WQMPP, a pre/post processor for the water quality
model which splits the global domain into a speci�ed number of smaller subdomains and sets up the local
data �les and message passing tables, has been developed. WQMPP, when run in post-processor mode also
combines the local subdomain output to produce global output in a format similar to that produced by the
original CE-QUAL-ICM code. PCE-QUAL-ICM, the parallel water quality model enhances CE-QUAL-ICM
with message passing. Inter-processor communication is done using MPI communication libraries and the
parallel code has been ported onto the CRAY-T3E, IBM-SP and SGI O2000. This paper explains the domain
decomposition and parallelization strategy employed in WQMPP and PCE-QUAL-ICM.

1 INTRODUCTION

CE-QUAL-ICM is a water quality model developed at the U.S. Army Corps of Engineers Waterways Exper-

iment Station (CEWES), Vicksburg, MS, by Carl F. Cerco, Thomas Cole and others (Cerco & Cole 1994,

1995). This numerical code can model the transport and reaction of more than twenty state variables simul-

taneously. It also contains a sediment diagenesis model, and can be run in one-, two-, or three- dimensional

con�gurations. The numerical method is based on unstructured �nite-volume method, and is explicit in

time in the horizontal direction and implicit in the vertical columns. The uid velocities are computed using

1

a hydrodynamics model such as CH3D-WES and are read in externally into CE-QUAL-ICM, and only the

water quality modeling is done within CE-QUAL-ICM. There are sophisticated physics incorporated into the

numerical model, and the code is written in ANSI Standard FORTRAN 77. The reader is referred to Cerco

& Cole (1994, 1995) for a detailed description of this numerical model. In this paper only those features

that are important from a parallelization point-of-view are discussed.

CE-QUAL-ICM has been used extensively in the eutrophication studies of Chesapeake Bay. Especially

of interest are long term studies, typically comprising tens of years. For these long term simulations,

the current serial code requires hundreds of supercomputer (CRAY-YMP) hours. The motivation behind

this project is to obtain at least an order of magnitude reduction in the simulation times. We hoped

to achieve this by porting the serial code onto distributed memory parallel computing platforms. With

most academic and government labs turning to parallel computers for their high performance computing

needs, developing parallel algorithms seems to be a desirable way to speed up existing sequential simulators.

PCE-QUAL-ICM, a parallel water quality model, is a product of this e�ort and has been developed at the

Center for Subsurface Modeling (CSM) at the University of Texas at Austin in conjunction with CEWES.

A data/domain decomposition strategy along with single program, multiple data (SPMD) paradigm is

employed and inter-processor communcation is done through MPI message-passing libraries. The parallel

code has been ported onto the IBM-SP and CRAY-T3E, which are distributed memory parallel computers,

and onto the SGI O2000 which has some shared and some distributed memory. In the rest of this paper the

parallel algorithm and the domain decomposition strategy are explained.

2 SOLUTION ALGORITHM OF CE-QUAL-ICM

The main component of CE-QUAL-ICM is the solution of the three-dimensional mass conservation equation

of the following form for each state variable:

� (VjCj)

�t
=

nX

k=1

QkCk +
nX

k=1

AkDk

�C

�xk
+
X

Sj (1)

The above equation represents conservation of mass in the jth control volume, and n is the number of faces

attached to control volume j. Qk, Ck, Dk, and Ak are respectively, the volumetric ow rate, concentration,

di�usion coe�cient, and cross-sectional area at face k of control volume j. Vj is the volume of control

volume j, and Sj are the external sources and sinks present in control volume j. �C
�xk

is the spatial gradient

of concentration in direction normal to face k, and
�VjCj

�t
is the rate of change of the total concentration in

control volume j.

CE-QUAL-ICM uses a simple time marching solution strategy. Within each time step itself, the solution

update is broken into two separate steps. In the �rst step, an intermediate concentration is computed which

takes into account the horizontal di�usion and advection along with all the external sources and sinks. This

step is completely explicit and there is no need to solve any system of linear equations. In the next step, the

vertical di�usion and advection are incorporated in an implicit manner and involves solving a tridiagonal

system of equations for each vertical column of water. Solution methodology plays an important role in

parallelization. Not all numerical techniques are readily parallelizable. CE-QUAL-ICM with its explicit

treatment of horizontal di�usion and advection makes it conceptually easy to parallelize and can potentially

2

bene�t a lot from parallelization. Implicit treatment of vertical transport and explicit treatment of horizontal

transport implies that we can bene�t by doing domain decomposition only in horizontal plane and assigning

all of the vertical column to the same subdomain.

For computing the horizontal advective ux, the concentration Ck at face k is needed and CE-QUAL-

ICM has two ways to compute this. One is the simple �rst-order accurate upwind di�erencing which sets Ck

equal to the upstream value, with upstream direction determined by the sign of Qk. Second is a higher-order

accurate QUICKEST scheme which uses quadratic interpolation for computing Ck by taking two upstream

cells and one downstream cell. Thus in a traditional domain decomposition sense we will need at least two

layers of overlap. Note that upwinding or the QUICKEST scheme is used only in the horizontal direction

and in the vertical direction a simple linear interpolation between the adjoining cells is used to compute Ck.

Either a �xed time step can be speci�ed or an automatic time step selection based on stability criteria

can be used. If the automatic time stepping option is chosen then the sub-domains need to communicate

with each other to select a global minimum time step if the computations are to remain synchronous.

CE-QUAL-ICM has several types of boundary conditions. At inow and outow, �rst-order upwinding

is used for advective uxes, and the di�usion and dispersion uxes are set to zero.

3 DATA STRUCTURES IN CE-QUAL-ICM

In addition to the solution algorithm, the data structures play an important role in parallel porting and

these are discussed in this section.

CE-QUAL-ICM is an unstructured �nite-volume code. Consequently, it does not have the traditional

(i; j; k) indices common in structured �nite-di�erence and �nite-volume codes. The cells and the faces are

numbered in a completely arbitrary manner and the cell connectivity is kept track of by having face-to-

block lists. Concentrations are assigned to a cell, and the faces hold information such as ow rate, di�usion

coe�cient and cross-sectional area. As explained in the previous section, the concentration at the cell face

for computing advective transport is computed using �rst-order upwinding or second-order QUICKEST

scheme. Therefore, each face needs to know the two neighbouring blocks on either side. These are stored

in arrays which are named as ILB, IB, JB, and JRB. For a given face, the de�nitions of each of these maps

are stated in Table 1 and are also shown pictorially in Fig.1. Note that ILB, IB, JB, and JRB represent

left-to-right, front-to-back and bottom-to-top in each of the co-ordinate directions. For each face there is an

additional list called QD which takes a value of 1 for the x-direction, a value of 2 for the y-direction and

a value of 3 for the z-direction. Also, for each vertical column, the surface block number is stored in SBN

and the bottom block number is stored in BBN. Since the same code can be run in full 3-D or in a depth

integrated mode, the SBN and BBN maps are very important. Another important map is the BU list, which

speci�es the block number above. There are certain phenomena such as sediment kinetics which take place

along the water column with deposition of sediment particles along each water column. The BU list helps

in computing these kinetics.

Even though the face and block numbering is arbitrary, there are some restrictions. Since the same code

can be run in both depth-integrated form and fully three-dimensional form, CE-QUAL-ICM requires that

all the hoizontal faces be numbered before the vertical faces. No restriction on the numbering of blocks is

mentioned in the user manual (Cerco & Cole 1995), but a similar restriction is implicit in the case of block

3

I
ILB(I) IB(I) JB(I) JRB(I)

Figure 1: Face to block data structures: ILB, IB, JB, and JRB.

IB(I) = The block to the left of face I
ILB(I) = The second block to the left of face I
JB(I) = The block to the right of face I
JRB(I) = The second block to the right of face I
QD(I) = The axis perpendicular to face I, 1 = x, 2 = y, 3 = z
BL(1,I) = Box length in x-direction
BL(2,I) = Box length in y-direction
BL(3,I) = Box length in z-direction
SBN(I) = The surface block number in water column I
BBN(I) = The bottom block number in water column I
NVF(I) = Number of vertical faces in water column I
VFN(J,I) = Global face number of vertical face J in water column I
BU(I) = The block above block I

Table 1: Important data structures in CE-QUAL-ICM.

numbers also, namely, that all the surface blocks be numbered �rst before the underlying lower-level blocks.

No additional data structures are de�ned for specifying boundary conditions. The faces across which there

is no ow such as the wall boundaries are not numbered at all, and consequently no transport calculations

are done at these faces. The inow and outow faces are determined in the code by going through the IB

and JB lists. Therefore, the order in which the boundary conditions are read in from disk �les should be the

same as the boundary faces order computed in the code. All these issues played a very important role in

the development of our decomposition algorithm. The local face and block lists derived for each processor

has to satisfy all of the above conditions, since the aim was to parallelize CE-QUAL-ICM with minimal

modi�cations.

4 PARALLEL ALGORITHM

From the solution algorithm of CE-QUAL-ICM already outlined above, it is clear that it is readily par-

allelizable. It is an explicit code and is implicit only in the vertical direction. Even in this case a small

tri-diagonal system of equations are solved locally within each water column and there is no implicitness in

the horizontal direction. Further, a data parallel approach would be a natural way to parallelize this code.

The original global domain is split into smaller subdomains, and each processor element (PE) works only on

its local subdomain. Since the solution within a subdomain will depend on the solution in its neighbouring

subdomains, the PEs exchange information through message passing communication libraries. The explicit

4

nature of the solution algorithm in CE-QUAL-ICM implies that it is enough to do message passing once

every time step. Note that this type of parallel computation does not change the global solution algorithm.

Conceptually all we are doing is splitting the work among processors. Thus the solution we would get

through parallel computation will be identical to that we would obtain if we were to solve it sequentially up

to machine precision.

CE-QUAL-ICM splits the mass-conservation solution into two parts, with horizontal transport being done

explicitly and vertical transport being done implicitly. Therefore, it makes sense to do domain decomposition

in the horizontal plane alone and assign all the underlying blocks in a vertical column to the same processor.

This de�nitely minimizes inter-processor communication, since now the implicit step involving solving a

system of tridiagonal linear equations is done locally within each PE. This is the approach we have taken in

our parallel code. We �rst divide the surface cells among each processor, and then allocate all the underlying

blocks under the surface cell to the same processor.

Domain decomposition itself is a non-trivial task and needs to take into consideration several issues

such as load-balancing and locality. Carter Edwards (Sagan 1994, Edwards 1997) developed an e�ective

decomposition strategy based on a Hilbert Space Filling Curve (HSFC), and this has been used with great

success in parallelizing ADCIRC, an advanced coastal circulation model based on the shallow water equations

(Chippada, Dawson, Martinez, and Wheeler 1996). A HSFC based domain decomposition is used in PCE-

QUAL-ICM.

One of the main goals is to parallelize CE-QUAL-ICM with minimal modi�cations. This way, we hope

to have a parallel code up and running quickly without introducing bugs into the code. This is especially

important considering that the authors had no familiaritywhatsoever with CE-QUAL-ICM before the project

started. Also subsequent modi�cations and revisions to PCE-QUAL-ICM are expected to be done by the

original developers of CE-QUAL-ICM. Hence, it is important that PCE-QUAL-ICM be as close as possible

to CE-QUAL-ICM. What all this amounts to is that we would like most of the parallel speci�c work done to

be outside the code. This led to the development of WQMPP, which is a pre/post-processor for PCE-QUAL-

ICM.WQMPP splits the global domain into smaller sub-domains and sets up all the required message passing

tables for inter-processor communication. Moreover, it decomposes each of the global �les and creates local

�les for each PE. Thus the original I/O in CE-QUAL-ICM need not be changed and each PE sees only its

local list of blocks and faces. This can result in signi�cant savings in memory requirements. WQMPP can

also be run in a post-processor mode which combines the local output �les of each PE to produce global

output �les which look exactly same as the ones that would have been produced by CE-QUAL-ICM. The

important details pertaining to WQMPP are described in greater detail in the next section.

5 WQMPP: PRE/POST PROCESSOR FOR PCE-QUAL-ICM

WQMPP is a pre/post processor for PCE-QUAL-ICM written in ANSI Standard FORTRAN 77. WQMPP

can be run in both pre-processor mode and post-processor mode. When run in pre-processor mode, it

splits the global domain, creates local input �les for each PE, and sets up the communication table for

inter-processor message passing. Below, we describe briey the various steps involved.

5

1. CE-QUAL-ICM has data structures that connect blocks to faces but not vice-versa. It is useful to have

a list which speci�es for each block the global numbers of its six faces. Therefore, we �rst create this

list from the IB, JB, and QD lists. Note that, not all faces are numbered in CE-QUAL-ICM. The land

boundaries through which there is no ux are not numbered for instance. Thus, a block can have a

face numbered zero as one of its face which only implies that it is a face with zero ux.

2. CE-QUAL-ICM is a �nite-volume code and all it needs are the box lengths in each direction, which

it uses to calculate cross-sectional areas of the cell faces and the cell volumes. Thus, there are no

global coordinates stored anywhere within CE-QUAL-ICM. However, we will need this for our domain

decomposition, since we would like to maintain locality. We reconstruct the global co-ordinates from

the box lengths and the face-to-block maps. Alternately, we could read the global coordinates of the

vertices from a disk �le. Both of these options have been implemented.

3. The next step is to do the actual domain decomposition. Since the solution algorithm is explicit in the

horizontal direction and implicit in the vertical direction, it is advantageous to split the surface blocks

among processors and assign all the underlying blocks in a vertical column to the same processor.

The domain decomposition is done using the Hilber Space Filling Curve approach developed by Carter

Edwards who also wrote the necessary C routines to do this. In this approach a continuous curve is

passed through all the mid-points of the surface blocks with the purpose of maintaining locality. The

number of vertical layers can vary in the domain and the HSFC routine partitions the domain so that

we get good load balancing. In our case, it amounts to each processor getting approximately the same

number of cell blocks, even though the number of surface blocks themselves may be widely di�erent.

4. After the surface blocks are partitioned all the underlying blocks are extracted using the vertical face

maps NVF and VFN and the face-to-block maps for each water column. We thus obtain a list of resident

blocks for each PE. The QUICKEST numerical scheme for computing the advective ux requires that

we know the two adjoining blocks on either side of each face. Using the face-to-box maps IB, ILB, JB,

and JRB a padding of two cell layers is given for each PE. At the end of this we have the list of all the

blocks that are assigned to each PE.

5. Using the block-to-face that has been computed previously all the faces that belong to a PE are

computed. All other data structures such as SBN, BBN, NVF, VFN, and BU are computed for each

processor.

6. After all the necessary local data structures are set up, each of the original global data �les is split into

smaller local �les to be read separately by each individual processor.

6 PCE-QUAL-ICM: CE-QUAL-ICM WITH MESSAGE PASS-
ING

In the previous section the pre-processor part of WQMPP was explained. At run time each PE needs to

exchange interface data and this requires certain modi�cations to the CE-QUAL-ICM code. These modi�-

cations are briey described in this section. CE-QUAL-ICM with the message passing related modi�cations

is what we call PCE-QUAL-ICM.

6

In PCE-QUAL-ICM, variables speci�c to message passing are introduced and these are listed in Table

2. All of the resident, send, and receive block related lists are created by WQMPP and written into disk

�les. When PCE-QUAL-ICM is executed, each executable copy of PCE-QUAL-ICM is started on a di�erent

processor and they all read the �les speci�c to them.

If the auto time step selection option is chosen, a global minimum needs to be computed. This is done

through a call to the MPI ALL REDUCE subroutine available through the MPI communications library.

Each PE computes a minimum for its domain, and then through a call to MPI ALL REDUCE a global

minimum is computed from the local minimum which is then broadcast to all PEs. At the end of this call

all PEs have the global minimum. Note that the time step calculation is dependent on the hydrodynamics

data. So, a new time step is calculated only when new hydrodynamics data is read.

CE-QUAL-ICM reads the hydrodynamics data such as ow rates and eddy visocity coe�cients externally.

Usually the hydrodynamics data is computed using CH3D-WES and written onto disk �les. Since the data

�les are typically very large they are written in binary format. Once every few time steps, CE-QUAL-ICM

reads the hydrodynamics data from the external disk �les. After reading in the hydrodynamics it recomputes

the volumes in the cells and the block lengths in the vertical direction. A recalculation of these quantities is

necessary because the water level may change with time. The surface block depth is chosen in such a way

that the water surface doesn't cross its boundaries. So, only the surface block's volume and box length in

the vertical direction changes with time. By using MPI SEND and MPI RECEIVE calls, the volumes and

box lengths in the overlap region are updated everytime new hydrodynamics data is read.

At the end of every time step, we have the right concentration values in the resident blocks. But the

ghost blocks themselves will have wrong values. To be able to proceed to the next time step the ghost blocks

also need to have the right values. This is obtained through MPI SEND and MPI RECEIVE calls. Thus,

at the end of every time step we perform message passing so that all of the blocks in a PE, both resident

and ghost, will have the right values.

To summarize, in PCE-QUAL-ICM we introduce some new variables to keep track of the resident, send

and receive lists. We also do some communications when new hydrodynamics data is read, which is done

only once every few time steps. At the end of every time step concentration values in the overlap region

are exchanged among PEs at the end of which all blocks in a PE have the right value. From the above

description it is clear that the changes to the original CE-QUAL-ICM are minimal.

7 POST-PROCESSING

Once PCE-QUAL-ICM is run successfully on a parallel computing platform, each processor will create output

�les pertaining to the domain it owns. To create output that looks indistinguishable from the original CE-

QUAL-ICM's output,we will need to combine these local output �les to create global output �les. WQMPP

described previously can also be run in post-processor mode. Using the decomposition tables it created

previously while pre-processing, WQMPP post-processes the local output �les to produce global output

�les.

7

NPES = Number of PEs
MYRANK = The local PE number (between 0 and NPES-1)
NUM RES BLOCKS = Number of resident blocks (i.e., the blocks the PE owns)
RES BLOCK NUM(I) = Local block number of resident block I
NUM COMM PE = Number of PEs with which the current PE needs to communicate
SEND PE NUM(I) = Target PE number for sending block data
NUM BL SEND(I) = Number of blocks to send to SEND PE NUM(I)
SEND BL NUM(J,I) = Send block list corresponding to SEND PE NUM(I)
RECV PE NUM(I) = Source PE Number for receiving data
NUM BL RECV(I) = Number of Blocks to receive from RECV PE NUM(I)
RECV BL NUM(J,I) = Receive-Block-List corresponding to RECV PE NUM(I)

Table 2: New variables/arrays introduced in PCE-QUAL-ICM.

8 APPLICATION TO CHESAPEAKE BAY

In the previous sections, the essential features of WQMPP and PCE-QUAL-ICM have been explained. These

numerical tools have been �rst tested on a simple 30 box model. Later they were applied to Chesapeake

Bay. The numerical model for Chesapeake Bay that was simulated consists of 8830 grid blocks, out of which

2100 were surface blocks. The two-dimensional numerical grid comprised of only the surface blocks is shown

in Fig.2. The physical domain is highly irregular and extremely complicated. The number of blocks in a

vertical water column varied between 1 and 18. The bathymetric depth of the physical domain is shown in

Fig.3.

The original 8830 grid block data set is �rst decomposed into smaller local subdomain problems using

WQMPP. A Hilbert space �lling curve passing through the mid-points of all surface blocks is drawn as

shown in Fig.4. Once the surface blocks have been numbered they are split among processors based on load

balancing criteria. Note that some water columns have more underlying blocks than others and this needs

to be taken into account in actual partitioning. At the end of domain partitioning, we get subdomains that

have nearly the same number of grid blocks, whereas the number of surface blocks may be widely di�erent.

Decompositions for two, four and eight processing elements (PE) are shown in Figs.5-7.

During initial testing, PCE-QUAL-ICM was run for a time period of one day and results obtained

were post-processed to obtain global outputs. These global outputs obtained from PCE-QUAL-ICM were

compared with those obtained from CE-QUAL-ICM, and were found to be identical.

A few speedup studies have been conducted to assess the e�ciency of our parallelization scheme. A 30

day simulation has been run on Chesapeake Bay with 8830 blocks and the speedup obtained on 3 di�erent

parallel computer architectures are shown in Fig.8. The best speedups were obtained on SGI O2K which is

a shared memory computer. CRAY T3E produced the least speedups. 8830 grid blocks is not a very big

data set and we lose speedup e�ciency beyond 16 PEs.

8

36 36.5 37 37.5 38 38.5 39 39.5 40
75

75.5

76

76.5

77

77.5
Chesapeake Bay

Figure 2: Chesapeake Bay: 2100 surface blocks and 8830 total grid blocks.

−30

−25

−20

−15

−10

−5

36 36.5 37 37.5 38 38.5 39 39.5 40
75

75.5

76

76.5

77

77.5
Chesapeake Bay: Bathymetric Depth

Figure 3: Chesapeake Bay: Bathymetric depth.

9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

36 36.5 37 37.5 38 38.5 39 39.5 40
75

75.5

76

76.5

77

77.5
Chesapeake Bay: Hilbert Space Filling Curve

Figure 4: Hilbert Spave Filling Curve.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

36 36.5 37 37.5 38 38.5 39 39.5 40
75

75.5

76

76.5

77

77.5
Chesapeake Bay: 2 PE decomposition

Figure 5: Domain decomposition for two processors.

10

1

1.5

2

2.5

3

3.5

4

36 36.5 37 37.5 38 38.5 39 39.5 40
75

75.5

76

76.5

77

77.5
Chesapeake Bay: 4 PE decomposition

Figure 6: Domain decomposition for four processors.

1

2

3

4

5

6

7

8

36 36.5 37 37.5 38 38.5 39 39.5 40
75

75.5

76

76.5

77

77.5
Chesapeake Bay: 8 PE decomposition

Figure 7: Domain decomposition for eight processors.

11

Theoretical

IBM SP

CRAY T3E

SGI O2K

5 10 15 20 25 30

5

10

15

20

25

30

No. of PEs

sp
ee

du
p

Figure 8: Speedup vs. number of processors.

9 CONCLUDING REMARKS

CE-QUAL-ICM, a three-dimensional eutrophication model, has been successfully ported onto parallel com-

puting environments. WQMPP is the pre/post processor that decomposes the global domain into smaller

local subdomains and sets up all the message passing tables required for inter-processor communication.

WQMPP, when run in post-processor mode, also combines the local outputs to produce global output in the

same format as that produced by the original CE-QUAL-ICM code. PCE-QUAL-ICM is the parallel water

quality model, and is nothing but CE-QUAL-ICM with message passing.

The parallel porting of CE-QUAL-ICM was achieved in a relatively short amount of time with minimal

changes to the code. PCE-QUAL-ICM can be run in both serial and parallel modes, and now we need

maintain only one code instead of two separate ones. This makes future development and maintenance

of codes easier. Since the modi�cations made to CE-QUAL-ICM are minimal, the original developers of

CE-QUAL-ICM will �nd PCE-QUAL-ICM very familiar. This should help tremendously in transferring the

technology back to the code developers.

The speed-ups obtained are only moderate. This could be due to many reasons. Most important being

that the problem size is small (only 8830 blocks). The numbering conventions used in CE-QUAL-ICM has

been at times frustrating. Especially, the way boundary conditions are read in. There is no boundary table

as such, and the code goes through all its faces to see which doesn't have neighbouring blocks, and sets

these faces to be boundary faces. The order in which the boundary values are to be read in is the same as

the order in which they are computed in code. This placed unnecessary restrictions on the development of

WQMPP, complicating it a lot. The same goes with the restriction that the surface blocks be numbered

before the lower level blocks are numbered. This complicated WQMPP as well and made PCE-QUAL-ICM

perform certain unnecessary calculations in the overlap region, which can normally be avoided. If some of

these restrictions on numbering are removed, it may give some improvement is speed-ups as well.

12

Getting PCE-QUAL-ICM to work on various computing platforms has not exactly been easy. Especially

hard has been the di�erences in wordlength used by CRAY-T3E and non-CRAY computers such as IBM-SP

and SGI PCA. So, PCE-QUAL-ICM is essentially platform independent, but there are a few things that

need to be set by the user depending on the computing environent.

This is an on-going research project between the Center for Subsurface Modeling (CSM) at the University

of Texas at Austin and the U.S. Army Corps of Engineers Waterways Experiment (CEWES) at Vicksburg.

Future modi�cations and improvements to PCE-QUAL-ICM andWQMPP are dependent on the experiences

of the end users such as researchers at CEWES.

10 ACKNOWLEDGEMENTS

This work was supported in part by a grant of HPC time from the DoD HPC Modernization Program.

References

[1] Carl F. Cerco, and Thomas Cole, 1994, \Three-Dimensional Eutrophication Model of Chesapeake Bay,"

Technical Report EL-94-4, US Army Corps of Engineers Water Experiment Station, Vicksburg, MS.

[2] Carl F. Cerco, and Thomas Cole, 1995, \User's Guide to the CE-QUAL-ICM Three-Dimensional Eu-

trophication Model, Release Version 1.0," Technical Report EL-95-15, US Army Corps of Engineers

Water Experiment Station, Vicksburg, MS.

[3] Srinivas Chippada, Clint N. Dawson, Monica L. Martinez, and Mary F. Wheeler, 1996, \Parallel Com-

puting for Finite Element Models of Surface Water Flow", in Computational Methods in Water Re-

sources XI, Vol. 2: ComputationalMethods in Surface Flow and Transport Problems, eds. A.A. Aldama,

J. Aparicio, C.A. Brebbia, W. G. Gray, I. Herrera and G. F. Pinder. pp. 63-70. ComputationalMechanics

Publications, Boston, July 1996.

[4] H. C. Edwards, 1997, \A Parallel Infrastructure for Scalable Adaptive Finite Element Methods and its

Application to Least Squares C1 Collocation," Ph.D. Thesis, The University of Texas, Austin, TX,

May 1997.

[5] Hans Sagan, 1994, Space-Filling Curves, Springer-Verlag.

13

